Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

DNA molecular weight  = nA*251.24 + nT*242.23 + nC*227.22 + nG*267.24 + (n-1)*61.97

RNA molecular weight = nA*267.24 + nU*244.20 + nC*243.22 + nG*283.24 + (n-1)*61.97

Here "nA", "nT", "nC", "nG", "nU" denote the number of the corresponding nucleotide in the molecule, "n" is the number of all bases (61.97 is the weight of an internal phosphate).

Note that for degenerate base characters average value of nucleotide weight is used, for example, if the sequence also contain "Y" characters (that is "C" or "T"), the sum will include one more summand - "nY*(242.23 + 227.22)/2".

...

To calculate the Extinction coefficient, an approach proposed by Richard Owczarzy is used: http://www.owczarzy.net/extinctionDNA.htm. That is for a single-stranded molecule:

Extinction coefficient = sum(extinction coefficients of all dinucleotides) - sum(extinction coefficients of inner mononucleotides)

For example, let's calculate the molar extinction coefficient ("ε") for "ATGCA":

ε(ATGCA) = ε(AT) + ε(TG) + ε(GC) + ε(CA) - ε(T) - ε(G) - ε(C) =

                      = 22800 + 19000 + 17600 + 21200 - 8700 - 11500 - 7400 =

                      = 53000

As for the other statistics, average values are used in case of degenerate base characters.

Extinction coefficientfor a double-stranded molecule is calculated as a sum of the extinction coefficients of the two single strands (es1 + es2) multiplied by coefficient of (1 - hypochromicity h260nm). The hypochromicity effect can be taken into account account as follows:

h260nm = (0.287fAT + 0.059fGC)

where fAT and fGC are fractions of AT and GC base pairs, respectively.

Melting temperature

The melting temperature is calculated as follows. For sequences of length 15 or longer:

...

nmole/OD260

The amount of DNA of or RNA represented in nanomoles per 1 unit of absorbance at 260 nm dissolved in 1 ml cuvette with 1 cm pathlength.

...

μg/OD260

The amount of DNA of or RNA represented in microgrames per 1 unit of absorbance at 260 nm dissolved in 1 ml cuvette with 1 cm pathlength.

μg/OD260 = nmoleOD260 * molarWeight * 0.001

Amino acid sequence common statistics

...